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Summary

A two-input Cobb-Douglas production function model is considered
where it is justnatural to require thatthemarginal productivity coefficients
(parameters) are non-negative and that, in some situations, these add up
to less than unity. A quadratic programming approach to maximise a
suitably defined objective function involving the productivity coefficients
as decision variables and their ordinary least square estimates as parameters
has been used to derive estimates of the parameters in the restricted space.
Performance of these estimates relative to least absolute error, restricted
least square, restricted maximum likelihood and ridge estimates has been
examined through an example.

Key words : Restricted parameter space, kuhn tucker conditions, J
Jack-Knife

Intromction

In the estimation of Cobb-Douglas (CD) production function from
agricultural data, an important problem (though quite usual) is to arrive at
estimates of marginal productivities which are non-negative. Two different
approaches have been followed for estimating CD parameters in the restricted
parameter space. In the first approach ordinary least squares and maximum
likelihood estimates ait accepted if all tlie estimates come out to be
non-negative, while some adjustments are proposed if some of tlie traditional
estimate (s) turns (turn) out to be negative (Dasgupta [2]). In the second
approach, estimates have been derived primarily tlirough the constrained
minimisation of a suitably chosen objective function in which the parameters
appear as the decision variables.

In LAE based estimation we minimise the sum of absolute deviations and
get the estimates through a linear programming problem which is adjusted to
yield unbiased estimates and is further modified to account for the
non-negativity constraints (see Mukherjee & Dasgupta [.5]). Ridge Estimation
has been extended to the problem of estimating CD parameters by minimising
the MSE with respect to one ridge parameter (Mukherjee & Dasgupta [6]).
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The problem incorporating non-negativity constraint has been refomiiilateci as
an exercise in quadratic programming.

In the present work, estimates of parameters in a two-input CD-model have
been derived by the use of quadratic programming, taking into account
non-negativity as well as 'decreasing returns to scale constraints. Some ideas
about biases and mean square errors (MSE's) of these estimates have been given
in temis of a numerical illustration.

2. The Model and the Solution Approach

Consider a two-input Cobb-Douglas model spacified as

Y = Xf> U (1)

where Y is the output, X, and are inputs and U is the disturbance.

Thus, under log-transfomiation, model (1) reduces to tlie two-variable linear
model

y = Pi X1 + P2X2 + U

where y = log Y, x. = log X. (i - 1,2) and u = log U.

The following assumptions are made.

i. Output and Inputs are measured in teriHS of their ratios to the respective
geometric means.

ii. U has a log-nomial distribution.

iii. 3, > 0, p2 > 0.

iv. -For the sake of simplicity, further assume tliat

= 1.

Incorporate subsequenty the usual restriction of diminishing returns to scale
in temis of the inequality

Pi + P2^1-

Following Barlow, etal [1] maximum likelihood estimate of (pj, P^) in the
non-negative quadrant can be obtained through the minimisation of

S* = S„ +(j^2-p2)'S22+2(&,-Pl)(^2-p2)S,2 (2)

P, > 0, P, > 0. .
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where are least square estimates of and and Sjj = sum of
squares/products of Xj andx^.

3. Use of Quadratic Programming

Problem Formulation

Rewrite S* in (2) and reformulate the problem of minimising S* subject
to tiie constrains Pj > 0, P^ > 0 as a quadratic programming problem. Now

2 2 2

S* = X E SijPiPj +1! Cjpj +a part not involving (pi.pj)
i=i j=i j=r

= - 2S** + a partnotinvolving (Pi pj) (3)

S S B ^
where S** =-l/2(Ppp2)L"

•^12 -^22 ^'2

and C =-(S.,$, +Sj^^2).j = 1,2.

Thus tlie problem reduces to

Maximise S**

subject to Pi > 0, P2 - 0-

The objective function S** involves a quardratic and linear part and since
the quadratic part is negative definite, botli the parts are strictly concave and
hence S** is strictly concave. Thus the above maximisation problem either has
no feasible solution or has a unique optimal solution. Kuhn-Tucker conditions
(Hadley, [4]) provide a necessary and sufficient condition for an optimal solution
and we can apply Wolfe's [8] algorithm to solve tlie corresponding (derived)
linear programming problem.

Solution Algorithm

Introducing slack variables Sj, the constraints can be written as

-p, +s^ = o

-p2 +S^ = 0 (4)

Then we construct the Lagrangian function

L(pi,p,:S^sUi.>^)
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= + (5)

Thus the Kuhn-Tucker conditions can be written as

aiyap, - s„p, + s,2p2-c. + >., = 0

3L/3P2 = S[2 Pi + S22 P2 - C2 + = 0

aiyasi = = 0

aL/as2 = - 2^ $2 = 0

aiyajii = 3i-Si = 0

aL/ax^ = P2-s^ = 0 (6)

After some necessary simplifications we get

^11 Pi+ ^12 P2 + ^1 - C!]

S12 P2 + S22 P2 + ^2 = C2

and p,Xi + P2 ^2 = 0

P,,p2.Xi,A^ > 0. (7)

Then introducing non-negative artificial variable W; andW2, the problem
reduces to

minimise z = (w, + W2)
subject to

^11 Pi ^12 P2 ^1 ^1 ~ ^1

^12 P2 ^22 P2 P2 ^2 ~

Pi + P2 A-2 = 0 (8)

and Pi.Pj, X,,,>l2,w,,w2 > 0.

Subsequently one can use the two phase simplex method to obtain an
optimum solution to the above linear jirogramming jjroblem, the solution
satisfying the complementary slackness condition. The optimum solution
obtained this way provides an optimal solution to the original quadratic
programming j^roblem.

4. Properties of the Estimates

Since the restricted estimates of pj and P2 obtained by the use of quadratic
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programiiiing, as explained in this section, are obtained only numberically from
a given sample (and not analytically in tenns of smaple observations) the
question of estimating the bias and the variance of any estimate does arise.
One way to get some idea aboutsuchproperties would be a simulation exercise.
But a better approach to this i)roblem seems to lie in the jackknife and bootstrap
methods for estimating bias and variance.

The jacknifed estimate of the bias of an estimate
§ = §(Xj, Xj,...,X^) where Xj, X^,..., X^ constitute asimple random sample
of size n from an unknown probability distribution F is given by (Quenouille,
[7]

Est. Bias = (n - 1) ^

where 6^ ^= 1/n E and =estimate of 0from tiie sample deleting the
ith sample observation. Then a bias-corrected estimate of 0 can be obtained
as

0 = §-Bias

= n6-(n- 1)0Q

Further with this reasampling process, Jackknife estimate of variance of
0 will be

^ S 1^0,"V <")
Tlie bootstrap generalise (9) in an apparently different way. Let

(X*,X^,.. .,X*) be a random sample drawn with replacement from the given
set of sample observations. Denoting tlie estimate of 0 based on

(X*, X* X*) as 0* = 0(X*, X^...., X*), the bootstrap estimate of the bias
and variance of 0* is based on 0* (Efron [3]).

Standard computer programs for the Wolfe's method being reasonably
accessible, it is quite possible to estimate the sampling vriance in these two
ways, given a set of i.i.d sample observations.

5. An Illustrative Example

The Data

Assume that in the model

Y = Pi Xi + Pj Xj + u
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i. P, = 0.05, = 0.75

ii. u ~ N (0, 0.1)

iii. Combinations of (x,, x^) values are as specified in the first two columns
of Table 1.

A single randomly selected value of u from the N (0,1) population will
generate a set of observations on Several u values were chosen

randomly (and corresponding 8 sets of values were obtained) in such a way
tliat the following results were found. A little trial and error was involved in
this exercise.

Table 1. Generated values of Y given X] and X2

"1 *2 Y

-1 -1 -0.8305

+1 + 1 0.7679

-1 -1 -0.6100

+1 + 1 0.7222

, -1 -0.8 -0.5883

+1 +0.8 0.5070

0.8 1 0.7807

-0.8 -1 -0.6922

Results

For quadratic programming approach, maximisation of the objective

function 5** in (3) was achieved through a relatively simple grid method by
trying- out values of 3,,p2 -

Estimates obtained by ai)plyihg four estimation schemes (excluding the LAE
scheme) are presented in Table 2. For the sake of comparability, estimates of
bias and MSB in each case are calculated by ap|)lying Jackkiiife technique
described in section 4).

It should be pointed out, however, that in tlie first two schemes since the
LSE of P, came out to be negative, the proposed estimate was taken as zero,
the Jackknife estimate in each rei^tition was zero and the estimation of bias
and MSE becomes meaningless.
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Comment

From the results presented in Table 2, it is observed that estimates obtained
tlirough different schemes do not differ much among tliemselves. However,
biases of these estimates as well as their MSE's exhibit significant differences.
These results are purely illustrative, rather than confmiiatory and tliat no general
conclusions regarding tlie relative efficiencies of the methods can be decided
on tlie basis of these limited results.

Table 2. Estimastes Obtained Under Different Schemes Together with Bias and MSE

P. P2

Schemes Estimate Bias MSE Estimate Bias MSE

I. Restrict least 0 * ♦ .923 -.0416 .0135

_I1. Restricted

maximum 0 * * .7335 .0028 .0010

Likelihood

III. Using
Quadratic
Programming .0110 .0049 .0008 .7110 .0024 .0003

IV. Ridge .1391 .0051 .0036 .7997 .0032 .0054

6. Case of Further Restrictions

In Indian agricultural context, we generally come across decreasing return
to scale. Thus in a two-input model (1), the restrictions to be considered while
estimating the parameters can be written as

p, > 0, ^ 0, Pi + < 1 (12)

Taking account of a new restriction on parameters will be equivalent to
including a new constraint in the problem fomiulation and subsequently
adjusting the solution algoritlim.

The set of equations in (4) will now include the additional equation

(p,+ p,)-l + S^ = 0

and the Lagrangian function will take the fomi

L(P,.P2,S^S5,S^,

= S" -X, (- p,+ sf) +?^(-p2 + S^) - (Pi + p2 - 1+ S^)

Tlie equivalent Kuhn-Tucker condition can be deduced as
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Sj, Pi + Si2Pj + X,i - X.3 = C,

^12 Pi ^22 P2 ^2~ ^3 ~ ^2

Pi + = 0

and >.3(pi + p2-l) = 0,

p„p„>.i,X3 > 0.

Then the refomiulatecl problem will be

Minimize Z = (Wj + w^)

subject to Sji Pi+ Sj2 P2 + X,, - X.3 + Wj = Cj

^12 Pi ^22 P2 ^ ~ ^3^2 ~ ^2

Pi ?ti + P2 = 0.

>^3(P1 + P2-1) = 0-

Again two phase simplex method can give an optimal solution.
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